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Abstract

Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases
of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein,
and so SMN upregulation is a focus of many preclinical and clinical studies. VWe examine four issues that
may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNA7
mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting
that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN
plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains
unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration
therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may
confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for
patients whose disease progression is slowed, but who retain significant motor dysfunction, additional

approaches used to enhance regeneration of the neuromuscular system may be of value.

Introduction

SMA is the most frequent genetic cause of death in
infants and toddlers. It was first described by Werdnig in
1891, when he observed two infant brothers with the
onset of progressive proximal leg weakness at 10 months
of age [1]. Hoffman, between 1893 and 1900, described
an additional seven patients from three families [2-4].
Although these cases were of intermediate severity,
Sylvestre in 1899 and Beevor in 1903 presented the
first cases of severe SMA: two infants with flaccid
paralysis of limbs and trunk muscles at birth [5-7].
These infants were from two families in which 7 out of
14 total children were affected, and all affected children
died within 6 months of age. Over half a century later,
Wohlfart, Eliasson, and Fex in 1955 and Kugelberg and
Welander in 1956 described the mild ambulant form of
SMA in two case series [7-9]. The clinical presentation
was similar to a limb-girdle muscular dystrophy, but

electromyography and a muscle biopsy documented
neurogenic changes, leading to speculation that this
represented a mild form of the disease described by
Werdnig and Hoffman. Early descriptions of intermedi-
ate and severe forms of SMA all recognized a progressive
and symmetric weakness involving the proximal extre-
mities, axial muscles, and intercostal muscles, with
prominent sparing of the diaphragm [7]. The accom-
panying pathological studies described degeneration of
the motor neurons in the anterior horn of the spinal
cord, the neurons through which the brain triggers
contraction of skeletal muscle.

Despite this stereotyped pattern of neuromuscular weak-
ness and motor neuron loss at autopsy, these early studies
highlighted marked differences in age of onset, rate of
progression, and overall severity of SMA. Thus, for over a
century, it was unclear if SMA was one disease with a broad
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spectrum of severity or represented multiple diseases.
This spectrum of phenotypes was formally classified in
1991, based on the age of clinical onset and maximum
motor function achieved [10]. Type I SMA, the most
common subtype, is characterized by disease onset
within 6 months of age and death within 2 years. The
onset of Type II SMA occurs between 6 and 18 months
of age, and patients gain the ability to sit upright but
not walk. Type III SMA presents after 18 months of age
and patients achieve ambulation, at least temporarily
[10-15].

The fact that these are different manifestations of a single
disease was demonstrated by the finding that 95 % of all
cases of SMA are caused by homozygous loss of the
survival motor neuron 1 (SMN1) gene [16]. SMN is a
ubiquitously expressed protein involved in multiple
aspects of RNA metabolism, including RNA splicing.
Complete loss of SMN would be embryonic lethal, but the
absence of SMN1 is compensated for by variable copy
numbers of the hypomorphic gene paralog survival motor
neuron 2 (SMN2). SMN2 potentially encodes for the same
protein as SMN1, but a single nucleotide transition in
exon seven leads to the skipping of exon seven in the
majority of transcripts, and production of a truncated
SMN protein that is rapidly degraded [17-19]. On average,
the higher the copy number of SMN2 the milder the
phenotype, but copy number is not fully prognostic since
SMN?2 is not the sole disease modifier [20]. SMA has an
incidence of approximately 1/11,000 live births and a pan-
ethnic carrier frequency of 1/54 [21,22].

Outstanding questions

Human genetics and preclinical studies have provided
clear proof of concept for SMN upregulation as a
therapeutic strategy potentially applicable to all patients
[23,24]. For this reason, clinical trials of several
approaches using antisense oligonucleotides to correct
the missplicing of SMN2, or viral vectors and small
molecules to increase SMN levels, are underway or
planned (Figure 1; [25]). This is, therefore, an exciting
period for SMA therapeutics and the outcome of the
trials is eagerly awaited. These approaches raise impor-
tant questions about the molecular functions of SMN
and the timing of SMN restoration, which have been
reviewed elsewhere [23,26] and so are not covered here.
Instead, we focus on four questions concerning the
relationship of preclinical and clinical studies, which
may be important in refining future therapeutic strate-
gies: (a) how predictive is the SMNA7 mouse model on
which most preclinical data are based?; (b) in which cell
types does SMN function need to be restored?; (c) will
SMN upregulation be sufficient, or should we target
other downstream targets in parallel? and (d) what is the
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role of regenerative medicine in restoring function of the
neuromuscular system?

In addition to the points highlighted below, we refer the
reader to several recent reviews that treat some of these
questions in more detail [19,23,25,26].

How predictive is the SMNA7 mouse?
Inactivation of the Smn gene in mice, which have no
equivalent of SMN2, results in massive cell death
during embryonic development [27]. However, mice
bearing a human SMN2 transgene on an Smn-null
background exhibit a progressive neuromuscular phe-
notype that, in many ways, mimics the human
pathology, including motor neuron loss and muscle
denervation [28,29]. Moreover, as in humans, pheno-
typic severity is inversely correlated with SMN levels:
introducing two copies of SMN2 produces a severe
SMA phenotype and death within 5 days, whereas
eight copies of SMN2 essentially rescue the mice. The
addition of an SMN transgene lacking exon seven
(SMNA7), together with two copies of SMN2, further
extends lifespan to ~13 days [30-32]. Other models
have been created using distinct but comparable
strategies [33]. Nevertheless, the SMNA7 model has
been the most widely utilized for evaluation of
candidate SMA therapeutics and so we focus on it
here. How close is it to the human disease, and how
predictive are positive outcomes in this model?

SMA patients exhibit dramatic differential vulnerability
of motor units that innervate different muscles. Despite
widespread motor neuron loss and flaccid paralysis,
SMA patients retain normal eye movements and external
sphincter continence and relatively normal facial expres-
sions [34-36]. Additionally, preserved function of
the diaphragm in conjunction with degeneration of the
intercostal muscles that support the thoracic cavity
produces a “bell-shaped chest” that is virtually pathog-
nomonic for SMA [35,37-39]. Using muscle denervation
as a quantitative readout for disease progression,
SMNA7 mice also show a high degree of differential
motor unit vulnerability [32]. Moreover, by comparing
the SMNA7 model with post-mortem samples from
Type 1 SMA patients on a muscle-by-muscle basis,
we have shown a remarkable degree of overlap between
the mouse and human neuromuscular phenotypes
[40,41]. Therefore, despite the severe phenotype of the
SMNA7 mouse, the exquisite selectivity of the human
disease at the neuromuscular level is modeled with very
high fidelity.

There is a less perfect match in terms of other aspects of
pathology that also affect the lifespan of the mice. For
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Figure |. Therapeutic strategies in spinal muscular atrophy
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The predominant therapeutic approach in spinal muscular atrophy (SMA) is to increase the amount of full-length survival motor neuron (SMN) protein, by
promoting greater inclusion of exon seven in transcripts from Smn2 or by over-expressing full-length SMN complementary DNA. Both approaches have
been shown to provide striking rescue of neuromuscular phenotype and survival when applied early in preclinical mouse models. To prepare for the possibility

that SMN-targeted therapies may not prove fully effective in all patients, other strategies are being evaluated in parallel. One involves correcting the
downstream effects of SMN deficiency, such as splicing defects in specific transcripts required for neuromuscular integrity. Another, which was recently reported to
show benefit in SMA patients, is to identify neuroprotective agents that can prevent or slow motor neuron death in an SMN-independent manner or stimulate

the regeneration of motor circuits. It is likely that a combination of such approaches will be required to completely address the needs of all SMA patients.
Abbreviations: AAYV, adeno-associated virus; ANT, adenine nucleotide translocator; ASO, antisense oligonucleotide; CypD, cyclophilin D; SMN, survival
motor neuron; SMN2, survival motor neuron 2; SNARE, soluble NSF-attachment protein (SNAP) receptors; VDAC, voltage-gated anion channel.

example, SMNA7 mice exhibit cardiac defects [42,43]
and distal tissue necrosis [29,44-46] that are not
characteristic features of the human condition [34]. It
has been suggested that human SMA is a multi-system
disorder, including congenital heart disease and vascular
perfusion abnormalities [47,48]. However, in the largest
study to date, congenital heart defects were observed
only in Type 0 SMA with one copy of SMN2, totaling
three out of four Type 0 patients that exhibited a prenatal
onset of weakness, contractures, and respiratory distress
at birth. None of the 61 Type I SMA patients examined
had congenital heart defects, with the exception of a very
small number of patients with common, minor cardiac
anomalies that resolved spontaneously [49]. Two addi-
tional studies examining cardiac involvement in approxi-
mately 80 SMA patients with Types I, II, and III
concluded that heart dysfunction is not a feature of

SMA [50,51]. Case studies have reported ulcerations and
necrosis in the distal extremities but, to our knowledge,
this is limited to four reported patients with clinical
descriptions suggesting Type 0 SMA [49,52]. In the two
patients that were kept alive on mechanical ventilation
for an extended period of time, all lesions resolved
without recurrence [52]. We conclude that multi-organ
dysfunction, including cardiac and vascular defects, is
not a general feature of human SMA. These findings call
for caution when interpreting some published data in
SMA mice, as therapeutics that rescue the neuromuscular
phenotype but do not ameliorate the underlying cardiac
pathology may not produce a commensurate improve-
ment in gross phenotype or survival [53], whereas
they might be effective in patients. Endpoints based on
quantitative evaluation of neuromuscular pathology
may be of greater predictive value.
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Overall, therefore, the SMNA7 model mimics some
aspects of SMA pathology with remarkable precision, but
also exhibits differences that may be species-specific and
need to be taken into account in comparing therapeutic
outcomes.

In which cell types does SMN need to be
restored?

SMA shares a major characteristic with all neurodegen-
erative disorders: selective degeneration of a limited
subset of neurons in response to dysfunction or deletion
of a ubiquitously expressed protein, in this case SMN. An
abundant literature based on the SMNA7 mouse
indicates that, although motor neuron dysfunction and
degeneration underlie the principal clinical phenotypes,
loss of SMN function in other cell types contributes in
important ways. Here, we review the effects of reductions
in SMN in different cell types.

Motor neurons

SMA in humans is characterized by extensive loss of
spinal motor neurons [41,54-56], and human induced
pluripotent stem cells (iPSC)-derived motor neurons
from SMA patients show an intrinsic survival deficit
in vitro [57-59]. However, the fact that many motor
neuron subpopulations survive intact at end-stage in the
SMNA7 mouse, perhaps due to its limited lifespan, has
led the field to question the contribution of motor
neuron death to the overall phenotype. Nevertheless,
motor neurons of the median motor column, which
innervate the proximal muscles that are most strongly
affected in patients, do show significant cell death at early
stages in SMNA7 mice [41,54]. Therefore, motor neurons
in mouse models, as in human patients, are selectively
vulnerable to low SMN. One potential explanation is that
normal motor neurons express markedly lower levels of
full-length SMN from the SMN2 gene than other cell
populations in the spinal cord do, due to particularly
inefficient splicing of exon seven [60]. The splicing defect
is further exacerbated by the depletion of SMN in the
SMNA7 mouse, generating a negative feedback loop that
may underlie some aspects of motor neuron vulnerability
[60,61].

Other studies in mice have examined the effect of
modulating SMN specifically within motor neurons.
Genetic knockdown of SMN in motor neuron progen-
itors, using Olig2-Cre-driven recombination of mouse
Smn on a background of two copies of SMN2, produced an
SMA-like phenotype with motor neuron degeneration and
neuromuscular weakness [62]. Despite this demonstration
of a cell-autonomous requirement for SMN in motor
neurons, the phenotype was markedly less severe than
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in SMNA7 mice, which have reduced SMN in all
tissues: approximately 70% of mice with SMN selectively
depleted in motor neurons survived to 12 months of age,
while SMNA7 mice, with ubiquitous SMN reduction,
survived an average of 13 days [62]. Moreover, the
“reverse” experiment, selective restoration of SMN in the
motor neurons of SMNA7 mice using a Cre-inducible Smn
allele under control of the choline acetyltransferase
(ChAT) promoter, fully prevented synaptic dysfunction
at the neuromuscular junction, but only partially
reduced motor neuron death, and had a relatively modest
effect on overall neuromuscular phenotype and death
[63]. Collectively, these experiments suggest that SMN
reduction in cell types other than motor neurons also
contribute substantially to the pathogenesis of SMA.

Other neuronal classes

The motor circuitry is a critical mediator of the firing, and
thus the functional output, of motor neurons. Given the
severe impairments in motor behavior in SMA mice,
such as an impaired righting reflex as early as P1 in
SMNAY7 mice, the modest changes in motor neuron loss
and transmission at the neuromuscular junction are
somewhat surprising. Thus, it has been hypothesized
that motor circuit dysfunction contributes to the SMA
phenotype. Indeed, studies in the SMNA7 mice demon-
strated a loss of number and function of synapses onto
motor neurons that mediate proprioceptive reflexes,
which are important for refining the output of the motor
system through feedback signals [54,64]. Loss of these
afferent synapses precedes motor neuron loss and even
occurs in embryonic SMNA7 mice, suggesting this is an
early pathological event that contributes to functional
impairment in SMA [54,65]. Additionally, it has been

demonstrated that the SMA phenotype in Drosophila
results primarily from dysfunction in the motor circuit,
not the motor unit [66]. However, increasing SMN levels
within motor neurons (though perhaps also other cell
types) in SMNA7 mice, and in a more severe inducible
SMA mouse, improves electrophysiological deficits and
loss of sensory-motor synapses, indicating that low SMN
in motor neurons may also contribute to motor circuit
dysfunction [53,63]. The H-reflex, which measures
motor unit firing in response to the stimulation of
proprioceptive 1a afferents, is reportedly absent in many
Type I SMA patients [67]. However, the interpretation
of these results is complicated by neuromuscular
denervation and motor neuron loss, so this merits
further investigation. Overall, there are functional con-
sequences of low SMN in multiple elements of the spinal
circuitry, but the full extent of the contribution of each
cell type to SMA pathogenesis remains to be fully
determined, particularly in human patients.

Page 4 of 14

(page number not for citation purposes)



F1000Prime Reports 2015, 7:04

Other neuronal phenotypes have been reported in mouse
models of SMA, including loss of corticospinal neurons in
the SMNA7 mouse and reduced cell proliferation and
neurogenesis in the hippocampus in the severe Smn”;
SMN2** mouse [56,68]. More studies are required to
determine whether pathology in these and other neuronal
cell types is a previously unappreciated aspect of the
human disease.

Muscle

Given the close trophic and functional interactions
between motor neurons and the muscles they innervate,
much work has been performed to delineate the
potential contribution of intrinsic skeletal muscle
abnormalities to the SMA phenotype. Early co-culture
experiments indicated that extracts of muscle biopsies
from SMA patients, but not aged-matched controls,
inhibited the trophic effect of neonatal chick muscle on
embryonic chick spinal neurons [69]. A later study
found that myofibers formed by fused muscle satellite
cells from severely affected SMA patients degenerated
within 3 weeks of innervation by rodent spinal cord
explants, whereas myofibers from mildly affected SMA
patients or controls survived for several months [70].
Cultures of SMA satellite cells from severe SMA mice
and primary myoblasts from SMNA7 mice exhibit an
altered expression of MyoD and myogenin, two key
muscle developmental factors, and myotube formation
deficits [71,72]. Additionally, cultured muscle cells
from SMA patient biopsies are smaller than those
from control patients and have significantly disrupted
expression of myogenic genes critical for muscle
development [73,74].

Myofibers in SMNA7 mice fail to grow during early
postnatal development, producing a severe and uniform
reduction in muscle size [75]. These defects may either be
muscle-intrinsic or may be secondary to abnormalities in
neuromuscular transmission observed even in the pre-
sence of fully innervating motor axons [31,76,77].
Moreover, key developmental events at the neuromus-
cular junction, such as expression of critical myosin
isoforms and maturation of the motor endplate, are
severely delayed in SMNA7 mice [75]. In order to
determine the origin of these changes, investigators have
modulated SMN expression in SMA mice selectively in
muscle.

An early study that increased SMN in muscle did not
find significant improvements in motor phenotype or
lifespan [78]. However, this study utilized the human
skeletal actin (HSA) promoter, which is not expressed in
satellite cells or myoblasts. Satellite cells, located between
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the sarcolemma and basal lamina of muscle fibers, are
muscle stem cells responsible for neonatal muscle growth
and maintenance and repair of adult muscle; they
constitute the major regenerative population in muscles
[79,80]. A body of literature has suggested that SMN-
deficient satellite cells may contribute to muscle pathol-
ogy in SMA [70,81-85]. Selective restoration of SMN
levels by 50% in muscle satellite cells, on a background of
complete Smn deletion in mature myofibers, markedly
improved the phenotype, with an extension in median
survival from 1 month to approximately 8 months of age
[82]. This improvement is likely due to the enormous
regenerative capacity of muscle satellite cells. A more
recent study selectively restored SMN in early muscle
progenitors using the MyoD and Myf5 promoters and
found a complete rescue of myofiber growth and an
improvement in motor phenotype and survival, but no
effect on neuromuscular junction deficits or central
synapses. Selective restoration in motor neurons with
the ChAT promoter, in contrast, produced only a partial
rescue of myofiber growth but restored neuromuscular
junction transmission [63]. In conclusion, SMN appears
to have cell-autonomous functions in muscle fiber
growth and/or maintenance independently of the rest
of the motor unit in both human and mouse SMA and
may contribute to disease pathogenesis. In particular,
SMN in muscle satellite cells appears to be critically
important for the regenerative capacity of muscle in
response to chronic SMA pathology.

Glial cells

Astrocytes execute critical functions in normal motor
neuron physiology, including buffering extracellular ions
and neurotransmitters, modulating synaptic structure and
function, and the release of neurotrophic factors [86,87].
They also play a pathogenic role in a variety of
neurodegenerative diseases, including the motor neuron
disease amyotrophic lateral sclerosis (ALS). In preclinical
models of familial ALS, astrocytes expressing mutated
SOD1 contribute to motor neuron death in a non-cell
autonomous manner, likely mediated by the release of a
neurotoxic factor [88-91]. This raises the possibility that
astrocytes similarly contribute to SMA pathogenesis.
Studies using the SMNA7 mouse and iPSCs from SMA
patients found morphological and cellular changes con-
sistent with activation, including the upregulation of glial
fibrillary acidic protein and decreased length of cellular
processes [92]. Furthermore, SMA iPSC-derived astrocytes
exhibited functional alterations, with an increase in
baseline Ca®* levels and a reduced Ca’" response to
ATP [92]. These changes, which precede motor neuron
loss in vivo, indicate that astrocyte dysfunction may
contribute to SMA pathology.
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Schwann cells around peripheral motor axons form the
myelin sheath, which is critical for axonal integrity and
fast axon potential conduction [93]. Peripheral nerve
abnormalities have been observed in human SMA
patients, including reduced conduction velocities,
altered membrane conductance, and disruption in
myelin [94-97]. It was recently reported that Schwann
cells isolated from SMA mice failed to express key myelin
proteins during differentiation in vitro, a phenotype that
was reversible with restoration of SMN protein. Moreover,
defective myelin protein expression and myelination of
neurites was observed in co-cultures of SMA-derived
Schwann cells and healthy neurons [98]. Alterations in
myelination in human and mouse SMA are difficult to
interpret, since the motor neurons and their axons also
have reduced SMN protein. However, this study raises the
intriguing possibility that intrinsic defects in Schwann cells
also contribute to SMA pathogenesis.

Consequences of cell-type specificity for therapeutic
strategies based on SMN

The data above indicate a role for SMN in multiple
central nervous system (CNS) cell types related to motor
neuron function, or muscles, to which motor units form
connections (Figure 2). This implies that, for optimal
clinical efficacy, therapeutic restoration of SMN should
occur in the whole nervous system and perhaps the
periphery (i.e. muscles). Is SMN required in any other
peripheral organs, and to what degree is this backed up
by preclinical data in the SMNA7 mouse?

Increasing SMN levels in the CNS of SMNA7 mice with
antisense oligonucleotides (ASOs) provides dramatic
improvement in the neuromuscular pathology, gross
behavior, and lifespan of mice [55,99-104]. Use of
morpholino chemistry provides marked rescue of the
SMNA7 mouse with a single intracerebroventricular
(ICV) injection, from ~2 weeks to over 14 weeks
[101,102,104]; comparable rescue was achieved using
peripheral administration [104]. In contrast, a study using
2’-O-methoxyethyl (MOE) chemistry in another severe
SMA mouse model found modest rescue with a single ICV
injection but dramatic rescue to over 100 days using high
doses peripherally, suggesting that low SMN in peripheral
organs contributes significantly to the overall SMA
phenotype [100]. This effect was attributed, at least in
part, to the correction of an SMA-related decrease in liver
production of insulin-like growth factor 1 (IGF-1), which
can act as a neurotrophic factor and is important for
normal postnatal growth and cardiac development and
function [105,106]. However, caution is required when
interpreting these studies, since the blood-brain barrier is
open during this stage of development and peripheral
administration produced substantial increases in full-
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length SMN in the CNS [100]. A recent study examined the
effect of peripheral administration of IGF-1 with adeno-
associated virus (AAV) serotype 1 in severe SMA mice and
found improvements in neuromuscular pathology, beha-
vioral deficits, and life span. Unexpectedly, these improve-
ments appeared to result from IGF-1-mediated increases
in SMN protein centrally and peripherally [107]. Thus,
much of the phenotypic improvement in peripheral versus
central administration of MOE oligonucleotides may be
due to IGF-1-mediated increases in SMN, further compli-
cating interpretation of the cell type-specific SMN require-
ments and the implications for human therapy.

The use of AAV vectors, which achieve long-term
transgene expression in non-dividing cells, represents
another powerful method for restoring SMN in targeted
cell types in mouse models of SMA. Indeed, a number
of groups have reported dramatic results with self-
complementary AAV serotype 9 expressing SMN
(scAAV9-SMN), with increases in median survival in
SMNA7 mice from ~15 days to over 150 days
[45,46,108-110]. Peripheral vein or intramuscular
SCAAV9-SMN administration led to widespread SMN
expression in the CNS and periphery, including muscle
and liver. Direct CNS injection with scAAV8-SMN, by
contrast, appeared to transduce the spinal cord and
brain without detectable expression in muscle, although
other peripheral organs, such as the liver, were not
examined [111]. CNS-restricted SMN expression
achieved comparable phenotypic rescue to studies that
also transduced peripheral tissue, with an increase in
median lifespan from 15 to 157 days [111]. The only
study to compare CNS and peripheral administration of
scAAVI-SMN found a greater phenotypic rescue in the
CNS-injected cohort [110]. However, this study used
relatively low titer virus and did not normalize viral
dose for route of administration, resulting in signifi-
cantly lower SMN expression in the spinal cord with
peripheral injection. Thus, despite the ability of scAAVS-
SMN (and presumably scAAV9-SMN) to selectively
target the CNS with intraparenchymal injection, studies
to date have not compared these routes of administra-
tion in a manner that sheds light on the tissue-specific
requirements of SMN restoration.

In conclusion, interpretation of studies using ASOs and
AAV vectors to determine the potential contribution of
low SMN in the periphery to the SMA phenotype are
complicated by a number of factors. Different ASOs
have different chemistries (morpholino versus MOE)
and the central versus peripheral biodistribution is
difficult to predict, especially considering the relative
immaturity of the blood-brain barrier in neonatal mice.
Moreover, the finding that increasing SMN in the
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Figure 2. Cell type diversity of requirement for survival motor neuron
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Although spinal muscular atrophy (SMA) has long been considered a disease affecting primarily motor neurons, studies in animal models have

demonstrated that multiple cell types are affected and may contribute to SMA pathogenesis. Selective restoration of survival motor neuron (SMN) in

specific cell types in SMA mouse models has been a powerful tool used to determine the cell type-specific effects of low SMN. Restoring SMN expression

selectively in motor neurons provides a relatively modest benefit, while restoring SMN in all neurons provides a dramatic phenotypic rescue. Additionally,

it has been demonstrated that loss of proprioceptive afferents precedes motor neuron loss and may induce electrophysiological deficits in motor neurons.

These experiments suggest that non-cell autonomous disease mechanisms within the motor circuit contribute substantially to SMA pathogenesis. In

addition to synaptic deficits, altered myelination and reactive astrocytes may contribute to motor neuron loss in SMA. An important consideration in the

development of potential therapies for SMA is to design treatments that target the cell types most relevant to disease progression.

Abbreviations: GFAP, glial fibrillary acidic protein.

periphery, specifically the liver, may lead to IGF-1-
mediated increases in SMN both peripherally and
centrally, complicates delineation of a possible SMN-
independent contribution of the liver and IGF-1
signaling to SMA pathogenesis [107]. Moreover, as
discussed previously, there are deficits in SMA mouse
models that are not present in human patients. Thus,
the organ-specific and cell type-specific requirements
for SMN require more study before the cellular basis of
the benefits of restoration of SMN can be fully defined.

Therapeutic targets other than SMN and the
role of regenerative medicine

There is rightly much excitement about the ongoing and
anticipated trials of SMN-restoring drugs in patients.
If the results reflect those obtained using mouse models,
they will provide significant benefit for patients. Never-
theless, given general problems in transitioning from
mouse to man, as well as specific challenges linked to the
stage of SMA at which each agent can be used, it seems
reasonable to plan complementary strategies in parallel.
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These fall into three main categories: (a) drugs that
target molecular or cellular elements of the disease
pathway downstream of SMN reduction; (b) neuropro-
tective treatments that, independently of the disease
mechanism, prevent or slow further motor unit loss;
and (c) approaches to enhance regeneration of a
neuromuscular system that is stabilized but functioning
at suboptimal strength.

Downstream therapeutic targets

Recent studies have identified molecular steps in the
downstream pathway, or candidate modifier genes, that
extend survival in SMA mice and are of potential interest
[112-121]. However, it remains to be demonstrated that
modulation of any of these candidate therapeutic targets
can provide protection in the SMNA7 mouse compar-
able with that of SMN restoration. Since the only
molecularly defined role for SMN is the biogenesis and
assembly of small nuclear ribonucleoproteins (snRNPs),
the major component of the spliceosome, it has been
hypothesized that deleterious splicing changes initiate
the disease process. However, early widespread splicing
changes in motor neurons are not a feature of SMA,
suggesting that splicing changes in a small number of
genes critical for motor unit health induce key patholo-
gical processes [122,123]. It was previously shown that
SMN reduction alters the snRNP profile in a non-uniform
manner, with a preferential reduction of minor snRNPs
[124]. Intriguingly, Lotti et al. [125] demonstrated that
SMN reduction induces defective splicing and reduces the
expression of a discrete set of U12 intron-containing
genes in Drosophila and mammalian cells. One of these
SMN target genes, stasimon, is required for normal
neurotransmitter release in Drosophila and axon out-
growth in zebrafish [66,125]. Restoration of stasimon in
SMN-deficient Drosophila corrects some of the neuro-
muscular junction defects, but not all. Defective splicing
and reduced levels of stasimon were also observed in
motor neurons in SMA mice. This is the first demonstra-
tion of a direct link between SMN reduction, a splicing
defect, and specific aspects of the SMA phenotype,
supporting the hypothesis that SMA pathogenesis may
result from splicing defects in a small number of genes. It
will be intriguing to determine whether restoration of
normal stasimon levels can rescue the phenotype of the
SMNA7 mouse and, in the future perhaps, human patients.

Neuroprotection

Another potential therapeutic approach is to prevent or
delay motor neuron death and degeneration. However,
as discussed above, this aspect of the human pathology is
underrepresented in the SMNA7 model, and it has been
argued that such neuroprotective strategies might inter-
vene too late in the disease pathway to be clinically

http://f1000.com/prime/reports/b/7/4

relevant and/or may be ineffective if restricted to motor
neurons. A recent preliminary report of a successful
Phase 2/3 trial of olesoxime (TRO19622) in SMA
patients is potentially exciting in this context. Olesoxime
delayed the loss of motor function for 2 years in
Type II and non-ambulatory Type III patients in a
double-blind, placebo-controlled trial involving
165 patients at 22 sites in seven European countries
[126]. Olesoxime was identified by high-throughput
screening as a neuroprotective agent for motor neurons
in vitro [127]. It binds two components of the mitochon-
drial permeability transition pore—voltage-gated anion
channel (VDAC) and translocator protein (TSPO)—and
thereby prevents cytochrome c efflux in conditions that
would otherwise promote apoptosis [127]. While it is
possible that olesoxime may also act through other
mechanisms in patients, the most parsimonious
conclusion is that neuroprotective strategies have
real potential to block progression—though not to
provide a complete cure—in patients with SMA.

Regenerative medicine approaches to
neurodegenerative disease

Patients treated with olesoxime—and even potentially
those who undergo SMN-restorative treatments—may
experience slowed functional loss but not a complete
restoration of muscle strength. In this context, it seems
important to consider regenerative therapies that augment
the function of the remaining motor units. Therapeutic
strategies include enhancing axonal regeneration or
sprouting, inducing the hypertrophy of remaining muscle
fibers [128-131], or replacing myofibers that have
degenerated by the grafting of muscle satellite cells or
stem cell-derived skeletal myocytes [70,81-85].

Motor units have substantial capacity for collateral
sprouting to re-innervate denervated myofibers, which is
an important compensatory mechanism in chronic
neuromuscular disease [132-134]. The difficulty of
measuring changes in motor unit size due to collateral
sprouting in preclinical models of SMA has precluded
the assessment of this therapeutic strategy. However,
progress has been made in adapting electrophysiological
measurements, such as the compound muscle action
potential (CMAP), the summated electrical activity of all
motor units supplying an individual muscle, and motor
unit number estimation (MUNE), a measurement of both
motor unit number and size based on CMAP, to mouse
models of SMA [135]. CMAP and MUNE have been
examined in SMA patients, and are known to correlate
with age, SMN2 copy number, and motor function
[136,137]. Similar to human patients, CMAP and MUNE
measurements of the sciatic nerve in SMNA7 mice exhibit
preserved neuromuscular function in the early postnatal
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period, followed by motor unit loss that correlates with
progression of the gross motor phenotype [135]. Regen-
erative therapies that enhance collateral sprouting would
be expected to increase CMAP, due to enlarged motor
unit territories, but not increase MUNE. Thus, CMAP in
combination with MUNE represents a potentially promis-
ing method to assess motor unit loss, as well as
preservation or collateral sprouting, in response to
therapeutic interventions in SMA model mice.

Regeneration of myofibers, in parallel with collateral
sprouting, is one critical determinant of the adaptive
capacity of the neuromuscular system. Given the growing
body of evidence that implicates impaired satellite cell
regenerative capacity in SMA pathology [82], enhancing
muscle regeneration through satellite cell transplantation
could provide therapeutic benefit. However, there are not
sufficient data to quantitatively evaluate such an approach
in SMA mice, given that local muscle transplantation may
not lead to functional improvement. Moreover, systematic
delivery of satellite cells or stem cell-derived skeletal
myocytes to the neuromuscular system of SMA patients
presents a considerable therapeutic hurdle.

In addition to increasing myofiber number, enhancing the
strength of functional myofibers through hypertrophy
represents another potential therapeutic strategy, which
has been evaluated by the modulation of myostatin and
other pathways that regulate myofiber growth. However,
these treatments may not alone be sufficient to prevent
progression and may need to be tested together with a
disease-stabilizing agent. Administration or transgenic
overexpression of the myostatin inhibitor follistatin in
SMNA7 mice, for example, modestly increased muscle
mass, but had modest [130] or no [131] effect on motor
function and survival.

Many challenges remain in validating and developing
these regenerative medicine approaches to SMA. How-
ever, the applicability of these strategies goes well
beyond SMA and they would seem an important strand
of any long-term strategy for neurodegenerative disease.

Conclusion

This is an exciting time for SMA patients, families and
researchers. Not only are multiple clinical trials based on
sound preclinical data completed, underway or planned,
we also are rapidly gaining a better understanding of the
disease process in both molecular and cellular terms.
Encouragingly, key phenotypes of the mouse models—
which have a genotype close to that of all patients—
mimic the selective neuromuscular degeneration that
characterizes SMA. Although many hurdles remain to be
cleared, the decision by NINDS (National Institute of

http://f1000.com/prime/reports/b/7/4

Neurological Disorders and Stroke) in 2003 to identify
SMA as the neurological disease most promising for
rational therapeutic approaches through the establish-
ment of the SMA Project is looking more and more
justified.
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